The NCCN Non-Melanoma Skin Cancer Panel has developed these guidelines outlining the treatment of dermatofibrosarcoma protuberans (DFSP) to supplement their other guidelines (NCCN Clinical Practice Guidelines in Oncology [NCCN Guidelines] for Basal Cell and Squamous Cell Skin Cancers and Merkel Cell Carcinoma; to view the most recent version of these guidelines, visit the NCCN Web site at www.NCCN.org). The NCCN Soft Tissue Sarcoma Panel provided expert input in the development of these guidelines. DFSP is an uncommon, low-grade sarcoma of fibroblast origin with an incidence rate of 4.2 to 4.5 cases per million persons per year in the United States.\(^1,2\) It rarely metastasizes. However, initial misdiagnosis, prolonged time to accurate diagnosis, and large...
tumor size at the time of diagnosis are common. Three-dimensional reconstruction of DFSP\(^3\) has shown tumors with highly irregular shapes and frequent finger-like extensions.\(^4\) As a result, incomplete removal and subsequent recurrence are common. The local recurrence rate for DFSP in studies ranges from 0% to 60%, whereas the rate of development of regional or distant metastatic disease is only 1% and 4% to 5%, respectively.\(^5\)

Diagnosis

As with all solid tumors, clinical suspicion is confirmed with biopsy. In most cases, examination of hematoxylin and eosin-stained specimens using light microscopy results in an unequivocal diagnosis. However, differentiation of DFSP from dermatofibroma can sometimes be difficult. In these instances, immunostaining with CD34, factor XIIIa, metallothioneins, tenascin, and/or stromelysin-3 may be useful.\(^5–9\) Therefore, the panel recommends that appropriate and confirmatory immunostaining be performed in all cases of suspected DFSP. Finally, whether the histologic features of a high mitotic rate or evidence of fibrosarcomatous change (typically in > 5% of the surgical specimen) have prognostic significance in DFSP is unclear. Studies in the biomedical literature both support\(^10,11\) and refute\(^12\) this notion. Thus, the panel requested that these 2 features be noted in all pathology reports assessing this tumor.

When the clinician’s suspicion for DFSP is high but the initial biopsy does not support the diagnosis, rebiopsy is recommended and may show tumor pres-

NCCN Dermatofibrosarcoma Protuberans Panel Members

Stanley J. Miller, MD/Chair\(\odot\)\(\oplus\)\(\ominus\)

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Murad Alam, MD, MSc\(\odot\)\(\oplus\)\(\ominus\)

Robert H. Lurie Comprehensive Cancer Center of Northwestern University

James S. Andersen, MD\(\oplus\)

City of Hope Comprehensive Cancer Center

Daniel Berg, MD\(\oplus\)

Fred Hutchinson Cancer Research Center/

Seattle Cancer Care Alliance

Christopher K. Bichakjian, MD\(\oplus\)

University of Michigan Comprehensive Cancer Center

Glen M. Bowen, MD\(\oplus\)

 Huntsman Cancer Institute at the University of Utah

Richard T. Cheney, MD\(\oplus\)

 Roswell Park Cancer Institute

L. Frank Glass, MD\(\oplus\)

 H. Lee Moffitt Cancer Center & Research Institute

Roy C. Grekin, MD\(\oplus\)

UCSF Helen Diller Family Comprehensive Cancer Center

Alan L. Ho, MD, PhD\(\oplus\)

Memorial Sloan-Kettering Cancer Center

Anne Kessinger, MD\(\oplus\)

The Nebraska Medical Center

Nanette Liegeois, MD, PhD\(\oplus\)\(\odot\)

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Daniel D. Lydiatt, DDS, MD\(\oplus\)\(\odot\)

UNMC Eppley Cancer Center at The Nebraska Medical Center

Jeff Michalski, MD, MBA\(\oplus\)

Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

William H. Morrison, MD\(\oplus\)

The University of Texas MD Anderson Cancer Center

Kishwer S. Nehal, MD\(\oplus\)

Memorial Sloan-Kettering Cancer Center

Kelly C. Nelson, MD\(\oplus\)

Duke Cancer Institute

Paul Nghiem, MD, PhD\(\oplus\)

Fred Hutchinson Cancer Research Center/

Seattle Cancer Care Alliance

Thomas Olencki, DO\(\oplus\)

The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute

Clifford S. Perlis, MD, MBE\(\oplus\)

Fox Chase Cancer Center

Ashok R. Shaha, MD\(\oplus\)\(\oplus\)

Memorial Sloan-Kettering Cancer Center

Malika Tuli, MD\(\oplus\)

St. Jude Children’s Research Hospital/

University of Tennessee Cancer Institute

Marshall M. Urist, MD\(\oplus\)

University of Alabama at Birmingham Comprehensive Cancer Center

Linda C. Wang, MD, JD\(\oplus\)

Dana-Farber/Brigham and Women’s Cancer Center

John A. Zic, MD\(\oplus\)

Vanderbilt-Ingram Cancer Center

NCCN Staff: Lauren Gallagher, RPh, PhD; Maria Ho, PhD; and Nicole McMillian, MS

KEY:

*Writing Committee Member

Specialties: \(\oplus\)Dermatology; \(\oplus\)Surgery/Surgical Oncology; \(\oplus\)Otolaryngology; \(\oplus\)Pathology/Dermatopathology; \(\odot\)Medical Oncology; \(\oplus\)Radiotherapy/Radiation Oncology
Dermatofibrosarcoma Protuberans Version 1.2012

CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>Suspicious lesion</th>
<th>Biopsy<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• H&P</td>
<td>• H&E</td>
</tr>
<tr>
<td>• Complete skin exam</td>
<td>• Immunopanel (e.g., CD34, factor XIIIa)</td>
</tr>
<tr>
<td></td>
<td>• Note and report evidence of fibrosarcoma change</td>
</tr>
</tbody>
</table>

WORKUP

- Biopsy^a
- H&E
- Immunopanel (e.g., CD34, factor XIIIa)
- Note and report evidence of fibrosarcoma change

CLINICAL FINDINGS

- Inadequate biopsy
- Rebiopsy^a
- Adequate biopsy

TREATMENT

- Excision^b

EXCISION

Goal:
- Every effort should be made to achieve clear surgical margins. Some form of complete histologic surgical margin examination is recommended, whenever possible. Tumor characteristics include long, irregular, subclinical extensions.

See Principles of Sarcoma Surgery in the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Soft Tissue Sarcoma (SARC-C). (To view the most recent version of these guidelines, visit the NCCN Web site at www.NCCN.org.)

Varied Approaches:
- Mohs technique^c
- Modified Mohs = Mohs technique with additional final margin for permanent section assessment.
- CCPDMA = Complete circumferential and peripheral deep-margin assessment^d
- 2- to 4-cm margins to investing fascia of muscle or pericranium with clear pathologic margins, when clinically feasible.

Reconstruction:
- It is recommended that any reconstruction involving extensive undermining or tissue movement be delayed until negative histologic margins are verified.
- If there is concern that the surgical margins are not completely clear, consider split-thickness skin grafting (STSG) to monitor for recurrence.

^aThis tumor is frequently misdiagnosed, even with multiple preliminary biopsies.

^bThe surgical approach to DFSP must be meticulously planned. Size and location of the tumor and cosmetic issues will dictate the most appropriate surgical procedure. See Excision (above).

^cMohs technique is used primarily in DFSP to insure complete removal and clear margins, and secondarily for its tissue sparing capabilities.

^dUsually performed as a meticulous, comprehensive en face permanent section examination of all surgical margins.

Clinical trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

CLINICAL PRESENTATION

Suspicious lesion

H&P

Complete skin exam

Biopsy

H&E

Immunopanel (e.g., CD34, factor XIIIa)

Note and report evidence of fibrosarcoma change

Inadequate biopsy

Adequate biopsy

Rebiopsy

WORKUP

ADJUVANT TREATMENT

Excision

Positive surgical margins

Negative surgical margins

Observe

FOLLOW-UP

Re-resection until margins clear or surgery not possible

Positive margins

Consider radiation therapy or Imatinib mesylate

Observe

Recurrence

• Check primary site every 6-12 months
• Patient education about regular self-exam

THERAPY FOR RECURRENCE/METASTASIS

Re-resection as feasible or Consider RT if not given previously or Imatinib mesylate in cases where disease is unresectable, or unacceptable functional or cosmetic outcomes will occur

Metastasis

Consider clinical trial, Imatinib mesylate, chemotherapy, RT or resection as feasible, given the specific clinical circumstances

ADJUVANT TREATMENT

Excision

Positive surgical margins

Re-resection

Negative surgical margins

Observe

FOLLOW-UP

Recurrence

• Check primary site every 6-12 months
• Patient education about regular self-exam

THERAPY FOR RECURRENCE/METASTASIS

Re-resection as feasible or Consider RT if not given previously or Imatinib mesylate in cases where disease is unresectable, or unacceptable functional or cosmetic outcomes will occur

Metastasis

Consider clinical trial, Imatinib mesylate, chemotherapy, RT or resection as feasible, given the specific clinical circumstances

The surgical approach to DFSP must be meticulously planned. Size and location of the tumor and cosmetic issues will dictate the most appropriate surgical procedure. See Excision (previous page).

Tumors lacking the t(17;22) translocation may not respond to imatinib. Molecular analysis of a tumor using cytogenetics may be useful before the institution of imatinib therapy.
ence. Multiple nonsupportive or equivocal biopsies over time, before definitive diagnosis, are common in the clinical history for this tumor; thus, DFSP is frequently misdiagnosed. Because metastatic disease is rare, an extensive workup is not routinely indicated unless suggestive aspects in the history and physical examination (H&P) or adverse prognostic histologic features are present. Stage I is local disease, stage II is regional disease, and stage III is distant disease.

Treatment

Initial treatment of DFSP is surgical. Because of its proclivity for irregular and frequently deep subclinical extensions, every effort should be made to completely remove this tumor at initial therapy. If initial surgery yields positive margins, re-resection is recommended whenever possible, with the goal of achieving clear margins. The surgical approach to DFSP must be meticulously planned. Size and location of the tumor and cosmetic issues will dictate the most appropriate surgical procedure. As noted in the algorithm, some form of complete histologic assessment of all surgical margins before reconstruction is preferred. See the NCCN Guidelines for Soft Tissue Sarcoma for principles of sarcoma surgery (to view the most recent version of these guidelines, visit the NCCN Web site at www.NCCN.org [SARC-C]). Mohs or modified Mohs surgery\(^{3,4,13–20}\) and traditional wide excision,\(^{21}\) typically with 2- to 4-cm margins to investing fascia that are subsequently verified to be clear through traditional pathologic examination, are all methods to achieve complete histologic assessment.\(^{14,22,23}\) In a recent series of 244 patients with DFSP, tumor depth was the only factor associated with disease-free survival in the primary setting, underscoring the importance to excise the deep fascia to remove any infiltrating tumor cells.\(^{24}\) In another retrospective review of 48 patients, positive margins were more frequent with wide excision than with Mohs, but the local recurrence rates were statistically similar (3.6% vs. 0%, respectively; \(P = 1.0\)).\(^{25}\) Confirmation of negative margins should precede any reconstruction that requires extensive undermining or tissue movement. If concern exists that the surgical margins are not completely clear, tissue rearrangement should be avoided and split-thickness skin grafting considered to monitor for recurrence.

DFSP is characterized by a translocation between chromosomes 17 and 22 (t(17;22)) resulting in the overexpression of platelet-derived growth factor receptor (PDGFR) \(\beta\).\(^{26–28}\) These findings suggest that targeting PDGFRs may lead to the development of new therapeutic options for DFSP. In recently published results, imatinib mesylate, a protein tyrosine kinase inhibitor, has shown clinical activity against localized and metastatic DFSP tumors containing t(17;22).\(^{29–33}\) Imatinib mesylate has recently been approved by the FDA for the treatment of unresectable, recurrent, and/or metastatic DFSP in adult patients.\(^{34}\) Because tumors lacking the t(17;22) translocation may not respond to imatinib molecular analysis with cytogenetics may be useful before initiating imatinib therapy.

Radiation has occasionally been used as a primary therapeutic modality for DFSP,\(^{35}\) but it is more commonly used as adjuvant therapy after surgery.\(^{36–38}\) Postoperative radiation therapy or imatinib mesylate should be considered for positive surgical margins if further resection is not feasible (unresectable disease). If a negative margin is achieved, no adjuvant treatment is necessary.

Recurrent tumors, whenever possible, should be resected. Radiation therapy, if not given previously, or imatinib mesylate should be considered if this is not possible, or if additional resection would lead to unacceptable functional or cosmetic outcomes. Clinical trials, imatinib mesylate, chemotherapy, radiation therapy, or re-resection as feasible under specific clinical circumstances should all be considered in the rare event of metastatic disease.

Several clinical trials are underway for the treatment of DFSP with imatinib (www.ClinicalTrials.gov).

Follow-Up

Finally, given the historically high local recurrence rates for DFSP, ongoing clinical follow-up of the primary site every 6 to 12 months is indicated, with re-biopsy of any suspicious regions. Although metastatic disease is rare, a guided H&P should also be performed, with additional imaging studies as indicated.

References

Dermatofibrosarcoma Protuberans

The NCCN guidelines staff have no conflicts to disclose.

| Individual Disclosures for the NCCN Guidelines Panel for Dermatofibrosarcoma Protuberans |
|---|---|---|---|---|---|
| Panel Member | Clinical Research Support | Advisory Boards, Speakers Bureau, Expert Witness, or Consultant | Patent, Equity, or Royalty | Other | Date Completed |
| Murad Alam, MD, MSCI | None | None | None | None | 10/1/10 |
| James S. Andersen, MD | Allergan, Inc. | None | None | None | 7/29/11 |
| Daniel Berg, MD | None | Genentech, Inc. | None | None | 8/24/11 |
| Christopher K. Bichakjian, MD | None | None | None | None | 5/2/11 |
| Glen M. Bowen, MD | None | None | None | None | 12/12/11 |
| Richard T. Cheney, MD | None | None | None | None | 5/23/11 |
| L. Frank Glass, MD | None | None | None | None | 3/29/11 |
| Roy C. Grekin, MD | Genentech, Inc. | None | None | None | 12/7/11 |
| Alan L. Ho, MD, PhD | AstraZeneca Pharmaceuticals LP; Merck & Co., Inc.; Novartis AG; Allos Therapeutics, Inc.; and Pfizer Inc. | AstraZeneca Pharmaceuticals LP | None | None | 7/29/11 |
| Anne Kessinger, MD | Pharmacyclics, Inc.; and sanofi-aventis U.S. LLC | Pharmacyclics, Inc.; and sanofi-aventis U.S. LLC | None | None | 5/4/11 |
| Nanette Liegeois, MD, PhD | None | None | None | None | 6/6/11 |
| Daniel D. Lydiatt, DDS, MD | None | None | None | None | 12/7/11 |
| Jeff Michalski, MD, MBA | None | None | None | None | 8/26/11 |
| William H. Morrison, MD | None | None | None | None | 7/18/11 |
| Kishwer S. Nehal, MD | None | None | None | None | 11/9/11 |
| Kelly C. Nelson, MD | None | None | None | None | 6/14/11 |
| Paul Nghiem, MD, PhD | None | None | None | None | 10/26/11 |
| Thomas Olencki, DO | Genentech, Inc.; and Pfizer Inc. | Genentech, Inc.; and Pfizer Inc. | None | None | 8/10/11 |
| Clifford S. Perlis, MD, MBe | Novartis AG | Genentech, Inc.; and Lucid, Inc. | Lucid, Inc. | None | 11/8/11 |
| Ashok R. Shaha, MD | None | None | None | None | 9/21/10 |
| Malika Tuli, MD | None | None | None | None | 10/26/11 |
| Marshall M. Urist, MD | None | None | None | None | 5/2/11 |
| Linda Wang, MD, JD | None | None | None | None | 6/3/11 |
| John A. Zic, MD | None | None | None | None | 6/7/11 |