NCCN Guidelines® Insights

Featured Updates to the NCCN Guidelines

David S. Ettinger, MD1; Wallace Akerley, MD2; Hossein Borghaei, DO, MS1; Andrew C. Chang, MD3; Richard T. Cheney, MD4; Lucian R. Chirieac, MD5; Thomas A. D’Amico, MD7; Todd L. Demmy, MD8; Ramaswamy Govindan, MD9; Frederic W. Grannis Jr, MD10; Stefan C. Grant, MD, JD11; Leora Horn, MD, MSc12; Thierry M. Jahan, MD13; Ritsuko Komaki, MD14; Feng-Ming (Spring) Kong, MD, PhD, MPH15; Mark G. Kris, MD16; Lee M. Krug, MD17; Rudy P. Lackner, MD18; Inga T. Lennes, MD19; Billy W. Loo Jr, MD, PhD20; Renato Martins, MD, MPH21; Gregory A. Otterson, MD22; Jyoti D. Patel, MD23; Mary C. Pinder-Schenck, MD24; Katherine M. Pisters, MD15; Karen Reckamp, MD, MS25; Gregory J. Riely, MD, PhD15; Eric Rohren, MD, PhD26; Theresa A. Shapiro, MD, PhD27; Scott J. Swanson, MD28; Kurt Tauer, MD29; Douglas E. Wood, MD30; Stephen C. Yang, MD31; Kristina Gregory, RN, MSN32; and Miranda Hughes, PhD33

Abstract

These NCCN Guidelines Insights focus on the diagnostic evaluation of suspected lung cancer. This topic was the subject of a major update in the 2013 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non–Small Cell Lung Cancer. The NCCN Guidelines Insights focus on the major updates in the NCCN Guidelines and discuss the new updates in greater detail. (JNCCN 2013;11:645–653)

From 1The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; 2Huntsman Cancer Institute at the University of Utah; 3Fox Chase Cancer Center; 4University of Michigan Comprehensive Cancer Center; 5Roswell Park Cancer Institute; 6Dana-Farber/Brigham and Women's Cancer Center; 7Duke Cancer Institute; 8Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; 9City of Hope Comprehensive Cancer Center; 10University of Alabama at Birmingham Comprehensive Cancer Center; 11Vanderbilt-Ingram Cancer Center; 12UCSF Helen Diller Family Comprehensive Cancer Center; 13The University of Texas MD Anderson Cancer Center; 14Memorial Sloan-Kettering Cancer Center; 15UNMC Epilepsy Center at The Nebraska Medical Center; 16Massachusetts General Hospital Cancer Center; 17Stanford Cancer Institute; 18Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; 19The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute; 20Robert H. Lurie Comprehensive Cancer Center of Northwestern University; 21Moffitt Cancer Center; 22University of Tennessee Cancer Institute; and 23National Comprehensive Cancer Network.

Disclosures for the NCCN Non–Small Cell Lung Cancer Panel

Individual disclosures of potential conflicts of interest for the NCCN Non–Small Cell Lung Cancer Panel members can be found on page 646.

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. The NCCN Guidelines® Insights highlight important changes in the NCCN Guidelines® recommendations from previous versions. Colored markings in the algorithm show changes and the discussion aims to further understanding of these changes by summarizing salient portions of the panel’s discussion, including the literature reviewed.

The NCCN Guidelines Insights do not represent the full NCCN Guidelines; further, the National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding the content, use, or application of the NCCN Guidelines and NCCN Guidelines Insights and disclaims any responsibility for their applications or use in any way.

The full and most current version of these NCCN Guidelines are available at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2013, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.
NCCN: Continuing Education

Accreditation Statement
This activity has been designated to meet the educational needs of physicians, nurses, and pharmacists involved in the management of patients with cancer. There is no fee for this article. The National Comprehensive Cancer Network (NCCN) is accredited by the ACCME to provide continuing medical education for physicians. NCCN designates this journal-based CE activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

NCCN is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

This activity is accredited for 1.0 contact hour. Accreditation as a provider refers to recognition of educational activities only; accredited status does not imply endorsement by NCCN or ANCC of any commercial products discussed/displayed in conjunction with the educational activity. Kristina M. Gregory, RN, MSN, OCN, is our nurse planner for this educational activity.

National Comprehensive Cancer Network is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. NCCN designates this continuing education activity for 1.0 contact hour(s) (0.1 CEUs) of continuing education credit in states that recognize ACPE accredited providers. This is a knowledge-based activity. UAN: 0836-0000-13-011-H01-P

Disclosure of Affiliations and Significant Relationships
The following authors have no relevant financial interests to disclose: Dr. Chang, Dr. Demmy, Dr. Grant, Dr. Kong, Dr. Lackner, Dr. Lennes, Dr. Pisters, Dr. Rohnen, Dr. Shapiro, Dr. Wood, and Dr. Yang.

The following authors have disclosed the following relevant financial relationships:

- Dr. Akerley: PI for Bristol-Myers Squibb Company; Daiichi-Sankyo Co., and Genentech, Inc. Advisory board member for Boehringer Ingelheim GmbH; Genentech, Inc.; Myriad Genetic Laboratories, Inc.; and Biotheranostics. Consultant for BioMarin and Clariant Consulting.

- Dr. Bhoraei: PI for Genentech, Inc. and Millennium Pharmaceuticals, Inc. Speaker bureau member for Amgen Inc. and Genentech, Inc.

- Dr. Cheney: Advisory board member for OptumHealth.

- Dr. Chirieac: Advisory board member for Boehringer Ingelheim GmbH. Consultant for Aposense; Infinity; and Shook, Hardy & Bacon.

- Dr. D’Amico: Consultant for Scanlan.

- Dr. Ettinger: Consultant for Boehringer Ingelheim GmbH; Eli Lilly and Company; Genentech, Inc.; Biodiesix; Gilead; and Roche Laboratories, Inc.

- Dr. Govindan: Consultant for AstraZeneca Pharmaceuticals LP; Boehringer Ingelheim GmbH; Bristol-Myers Squibb Company; Covidien AG; Genentech, Inc.; GlaxoSmithKline; and Pfizer Inc.

- Dr. Grannis: Expert witness for Steven Phillips. Ex-officio member – President of the medical staff for City of Hope National Medical Center Board of Directors.

- Dr. Horn: PI for Boehringer Ingelheim GmbH. Advisory board member for Genentech, Inc. and OSI Pharmaceuticals, Inc.

- Dr. Jahan: Sub-investigator for Abbott Laboratories. Co-PI for Eli Lilly and Company; Genentech, Inc.; ImClone Systems Incorporated; and Morphotek Inc. Site PI for Aduro Pharmaceuticals and Merrimack Pharmaceuticals. Advisory board member, speaker bureau member, expert witness, or consultant for Novartis Pharmaceuticals Corporation.

- Dr. Komaki: PI for Pfizer Inc.

- Dr. Kris: Site PI for Boehringer Ingelheim GmbH and Pfizer Inc. Consultant for Boehringer Ingelheim GmbH and Roche Laboratories, Inc. Advisory board member for Genentech, Inc.; Bind Biosciences; Clovis Oncology, Inc.; and Esanex, Inc.

- Dr. Loo: Workshop participant for Siemens Medical Solutions Diagnostics. Speaker at Annual Users Meeting for Varian Medical Systems, Inc.

- Dr. Martins: PI for Bayer Healthcare; Eisai Inc.; Genentech, Inc.; Novartis Pharmaceuticals Corporation; and Pfizer Inc. Receives research funding from Exelixis Inc.

- Dr. Otterson: Receives research funding from Abraxis Oncology; Boehringer Ingelheim GmbH; Celgene Corporation; Genentech, Inc.; GlaxoSmithKline; Pfizer Inc; and Pharmacyclerics. Consultant for Abraxis Bioscience, Inc. Advisory board member for Genentech, Inc.

- Dr. Patel: Receives research funding from Eli Lilly and Company. Advisory board member for Genentech, Inc.

- Dr. Pinder-Schenck: Speakers bureau member for Eli Lilly and Company. PI for Genentech, Inc.; Merck & Co., Inc.; and Pfizer Inc.

- Dr. Reckamp: PI for Amgen Inc.; Bristol-Myers Squibb Company; GlaxoSmithKline; Astellas; and Pfizer Inc. Consultant for Amgen Inc.

- Dr. Riely: Involved in clinical research for GlaxoSmithKline; Millennium Pharmaceuticals, Inc.; Novartis Pharmaceuticals Corporation; and Chugai. PI for Infinity Pharmaceuticals. Consultant for Celgene Corporation and Daiichi-Sankyo Co. Advisory board member for Chugai.

- Dr. Swanson: Advisory board member for Covidien AG and Ethicon, Inc. Dr. Tauer: Speakers bureau member for Eli Lilly and Company.

The NCCN Guidelines Staff have no conflicts to disclose.

All clinicians completing this activity will be issued a certificate of participation. To participate in this journal CE activity: 1) review the learning objectives and author disclosures; 2) study the education content; 3) take the posttest with a 70% minimum passing score and complete the evaluation at http://education.nccn.org/node/22017; and 4) view/print certificate.

Release date: June 10, 2013; Expiration date: June 10, 2014

Learning Objectives:
Upon completion of this activity, participants will be able to:

- Integrate into professional practice the updates to NCCN Guidelines for NSCLC.
- Describe the rationale behind the decision-making process for developing the NCCN Guidelines for NSCLC.

EDITOR: Kerrin M. Green, MA, Assistant Managing Editor, JNCCN—Journal of the National Comprehensive Cancer Network, has disclosed that she has no relevant financial relationships.

CE AUTHORS: Nicole B. Harold, BS, Manager, Continuing Education and Grants, has disclosed that she has no relevant financial relationships.

Kristina M. Gregory, RN, MSN, OCN, Vice President, Clinical Information Operations, has disclosed that she has no relevant financial relationships.

James Przak, RPh, Assistant Director, Continuing Education and Grants, has disclosed the following relationships with commercial interests: Bristol-Myers Squibb Company: Pension; Pfizer, Inc: Stockholder; United Healthcare Group: Stockholder; Johnson & Johnson: Stockholder.

Miranda Hughes, PhD, Oncology Scientist/Senior Medical Writer, has disclosed that she has no relevant financial relationships.

Supported by educational grants from Eisai, Inc.; Millennium: The Takeda Oncology Company; Teva Pharmaceuticals; Bayer HealthCare Pharmaceuticals Inc.; Celgene Corporation; Endo Pharmaceuticals and HealthTronics; Genentech; and ARIAD Pharmaceuticals, Inc.

Overview

Smoking tobacco is the primary risk factor for lung cancer.\(^1\)\(^-\)\(^4\) The risk of lung cancer increases with the number of packs of cigarettes smoked per day and the number of years spent smoking (ie, pack-years of smoking history).\(^5\)\(^-\)\(^7\) Thus, current smokers should be encouraged to quit (http://www.smoke-free.gov/),\(^1\)\(^,\)\(^8\)\(^-\)\(^11\) and former smokers should be encouraged to avoid smoking. Agents that can be used to promote smoking cessation include nicotine replacement (eg, gum, inhaler, lozenge, nasal spray, patch), sustained-release bupropion, and varenicline (http://www.ahrq.gov/clinic/tobacco/medsmoktab.htm).\(^8\)\(^-\)\(^11\) Other risk factors for lung cancer include radon, disease history, family history of lung cancer, and occupational exposure (eg, asbestos, silica, coal smoke, and diesel fumes; see the NCCN Clinical Practice Guidelines in Oncology [NCCN Guidelines] for Lung Cancer Screening, available online at NCCN.org).\(^1\)\(^,\)\(^4\)\(^,\)\(^12\)\(^,\)\(^13\)

NCCN Guidelines Insights

CLINICAL PRESENTATION

- **Nodule suspicious for lung cancer**
 - Multidisciplinary evaluation\(^8\)
 - Smoking cessation counseling

RISK ASSESSMENT\(^b\)

<table>
<thead>
<tr>
<th>Patient factors</th>
<th>Radiologic factors(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Age</td>
<td>- Size, shape, and density of the pulmonary nodule</td>
</tr>
<tr>
<td>- Smoking history</td>
<td>- Associated parenchymal abnormalities (eg, scarring or suspicion of inflammatory changes)</td>
</tr>
<tr>
<td>- Previous cancer history</td>
<td>- Fluorodeoxyglucose (FDG) avidity on PET imaging</td>
</tr>
<tr>
<td>- Family history</td>
<td>- Exposure to infectious agents (eg, endemic areas of fungal infections, tuberculosis) or risk factors or history suggestive of infection (eg, immune suppression, aspiration, infectious respiratory symptoms)</td>
</tr>
<tr>
<td>- Occupational exposures</td>
<td></td>
</tr>
<tr>
<td>- Other lung disease (chronic obstructive pulmonary disease [COPD], pulmonary fibrosis)</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Multidisciplinary evaluation including thoracic surgeons, thoracic radiologists, and pulmonologists to determine the likelihood of a cancer diagnosis and the optimal diagnostic or follow-up strategy.

- Risk calculators can be used to quantify individual patient and radiologic factors but do not replace evaluation by a multidisciplinary diagnostic team with substantial experience in the diagnosis of lung cancer.

\(^8\) Multidisciplinary evaluation including thoracic surgeons, thoracic radiologists, and pulmonologists to determine the likelihood of a cancer diagnosis and the optimal diagnostic or follow-up strategy.

\(^b\) Risk calculators can be used to quantify individual patient and radiologic factors but do not replace evaluation by a multidisciplinary diagnostic team with substantial experience in the diagnosis of lung cancer.

\(^c\) See Principles of Diagnostic Evaluation (DIAG-A1 of 2).
Currently, most patients with lung cancer are diagnosed at an advanced stage when curative treatment is not possible. Thus, lung cancer has a higher mortality rate than other types of cancer. Only 15.9% of all patients with lung cancer are alive 5 years or more after diagnosis. In 2013, an estimated 228,000 new diagnoses and 159,500 deaths from lung and bronchial cancer will occur in the United States. Screening with low-dose CT has been shown to decrease the mortality rate from lung cancer. Although screening with low-dose CT can be used to identify possible lung cancer, most cases are currently identified through other means (eg, symptoms, including weight loss, long-term cough, dyspnea), because lung cancer screening is not yet widely available and many insurance companies are not currently paying for screening. Early-stage lung cancer is often detected in patients because a chest radiograph or CT scan (obtained for other reasons) incidentally shows a lung nodule or mass. For patients with suspected lung cancer, diagnostic and treatment strategies should be decided in a multidisciplinary setting and on an individual basis to maximize outcomes.

Data show that low-dose CT can be used to detect lung cancer at an early stage when it is more likely curable. The NCCN Guidelines for Lung Cancer Screening recommend screening with low-dose CT for select high-risk current and former smokers with previous risk factors for lung cancer. Other organizations also recommend screening with low-dose CT for select high-risk patients (eg, American College of Chest Physicians, American Cancer Society, American Lung Association, ASCO, and American Thoracic Society) to view the most recent version of these guidelines, visit NCCN.org. Other organizations also recommend screening with low-dose CT for select high-risk patients (eg, American College of Chest Physicians, American Cancer Society, American Lung Association, ASCO, and American Thoracic Society) (http://www.lung.org/lungdisease/lungcancer/ lungcancerscreeningguidelines/).

The NCCN Guidelines for Non–Small Cell Lung Cancer (NSCLC) discuss management of nonsquamous NSCLC (eg, adenocarcinoma), which is the most common type of lung cancer, and also less

FINDINGS

<table>
<thead>
<tr>
<th><8 mm pulmonary nodule</th>
<th>>8 mm solid non–calcified nodule</th>
<th>≤10 mm non–solid or part-solid nodule</th>
<th>>10 mm non–solid or part-solid nodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiologic surveillance</td>
<td>Low suspicion of lung cancer</td>
<td>Radiologic surveillance</td>
<td>Low suspicion of lung cancer</td>
</tr>
<tr>
<td>Consider PET-CT scan</td>
<td>Biopsy or Surgical excision</td>
<td>Consider surgical excision</td>
<td>Surgical excision</td>
</tr>
<tr>
<td>LDCT at 3 mo</td>
<td>Biopsy or Surgical excision</td>
<td>LDCT in 6–12 mo</td>
<td>Biopsy or Surgical excision</td>
</tr>
<tr>
<td>See NCCN Guidelines for Lung Cancer Screening</td>
<td>Cancer confirmed</td>
<td>See NCCN Guidelines for Lung Cancer Screening</td>
<td>Cancer confirmed</td>
</tr>
</tbody>
</table>

FOLLOW-UP

- **Low suspicion of lung cancer**
 - LDCT at 3 mo
 - See NCCN Guidelines for Lung Cancer Screening

- **Suspicion of lung cancer**
 - Biopsy or Surgical excision
 - See NCCN Guidelines for Lung Cancer Screening

- **No cancer**
 - Cancer confirmed
 - See NCCN Guidelines for Lung Cancer Screening

- **Cancer confirmed**
 - See NSCL-1 or appropriate NCCN Guidelines

a Multidisciplinary evaluation including thoracic surgeons, thoracic radiologists, and pulmonologists to determine the likelihood of a cancer diagnosis and the optimal diagnostic or follow-up strategy.

b Risk calculators can be used to quantify individual patient and radiologic factors but do not replace evaluation by a multidisciplinary diagnostic team with substantial experience in the diagnosis of lung cancer.

c See Principles of Diagnostic Evaluation (DIAG-A 1 of 2).

d A positive PET result is defined as a standard uptake value (SUV) in the lung nodule greater than the baseline mediastinal blood pool. A positive PET scan finding can be caused by infection or inflammation, including absence of lung cancer with localized infection, presence of lung cancer with associated (eg, postobstructive) infection, and presence of lung cancer with related inflammation (nodal, parenchymal, pleural). A false-negative PET scan can be caused by a small nodule, low cellular density (nonsolid nodule or ground glass opacity [GGO]), or low tumor avidity for FDG (eg, adenocarcinoma in situ [previously known as bronchoalveolar carcinoma], carcinoid tumor).

e Patients with a suspicion of lung cancer after PET-CT require histologic confirmation before any nonsurgical therapy.

f The choice of biopsy or surgical excision should be based on the clinical suspicion of lung cancer, location of lesion (feasibility for surgical identification and resection by minimally invasive video-assisted thoracic surgery [VATS]), and patient preferences.

g Patients with a strong clinical suspicion of stage I or II lung cancer (based on risk factors and radiologic appearance) do not require a biopsy before surgery.
common types of lung cancer (eg, squamous cell carcinoma, large cell carcinoma). Other types of thoracic cancer are discussed in the NCCN Guidelines for Malignant Pleural Mesothelioma, Small Cell Lung Cancer, and Thymomas and Thymic Carcinomas (to view the most recent version of these guidelines, visit NCCN.org).

Principles of Diagnostic Evaluation

A new section on diagnostic evaluation of suspected lung cancer was added for the 2013 update (see DIAG-A, pages 649 and 650). This new section includes an algorithm for evaluating suspicious lung nodules observed on chest radiograph or CT scan (see DIAG-1 and DIAG-2, page 647 and 648).

Diagnostic Evaluation of Lung Nodules

This new diagnostic section describes the evaluation of suspicious pulmonary nodules or masses that are seen on chest radiograph and CT. Patient factors (eg, age, smoking history, occupational exposure) and radiologic characteristics (eg, nodule size, shape, other lung pathology) must be carefully evaluated by a multidisciplinary diagnostic team to help formulate decisions about how to proceed with the workup of a suspicious lung nodule. The NCCN Guidelines recommend biopsy or surgical excision for highly suspicious nodules or further surveillance for nodules with a low suspicion of cancer, depending on the type of nodule and a multidisciplinary evaluation of other patient factors (see DIAG-1, page 647). PET/CT scans also may be used to aid the decision-making process. Several factors, including the size of the pulmonary nodule, whether the nodule is changing in size, and the type of nodule (eg, solid noncalcified nodule vs nonsolid nodule), are used to determine whether the nodule is more or less likely to be lung cancer (see DIAG-2, page 648).
The preferred diagnostic strategy for an individual patient depends on the size and location of the tumor, the presence of mediastinal or distant disease, patient characteristics (such as pulmonary pathology and/or other significant comorbidities), and local experience and expertise.

- The least invasive biopsy with the highest yield is preferred as the first diagnostic study.
- Patients with central masses and suspected endobronchial involvement should undergo bronchoscopy.
- Patients with peripheral (outer one-third) nodules should have navigational bronchoscopy, radial EBUS, or TTNA.
- Patients with suspected nodal disease should be biopsied by EBUS, navigational bronchoscopy, or mediastinoscopy.
- Esophageal ultrasound (EUS)–guided biopsy provides additional access to station 5, 7, 8, and 9 lymph nodes if these are clinically suspicious.
- TTNA and anterior mediastinotomy (that is, Chamberlain procedure) provide additional access to anterior mediastinal (station 5 and 6) lymph nodes if these are clinically suspicious.
- Lung cancer patients with an associated pleural effusion should undergo thoracentesis and cytology. A negative cytology result on initial thoracentesis does not exclude pleural involvement. An additional thoracentesis and/or thoracoscopic evaluation of the pleura should be considered before starting curative intent therapy.
- Patients suspected of having a solitary site of metastatic disease should preferably have tissue confirmation of that site if feasible.
- Patients suspected of having metastatic disease should have confirmation from one of the metastatic sites if feasible.
- Patients who may have multiple sites of metastatic disease—based on a strong clinical suspicion—should have biopsy of the primary lung lesion or mediastinal lymph nodes if it is technically difficult or very risky to biopsy a metastatic site.

Decisions about the optimal diagnostic steps for suspected stage I to III lung cancer should be made by thoracic radiologists, interventional radiologists, and board-certified thoracic surgeons who devote a significant portion of their practice to thoracic oncology. Multidisciplinary evaluation may also benefit from involvement of a pulmonologist with experience in advanced bronchoscopic techniques for diagnosis, depending on local expertise.

- Factors to be considered in choosing the optimal diagnostic step include:
 - Anticipated diagnostic yield (sensitivity)
 - Diagnostic accuracy including specificity and particularly the reliability of a negative diagnostic study (that is, true negative)
 - Adequate volume of tissue specimen for diagnosis and molecular testing
 - Invasiveness and risk of procedure
 - Efficiency of evaluation
 - Access and timeliness of procedure
 - Concomitant staging is beneficial, because it avoids additional biopsies or procedures. It is preferable to biopsy the pathology that would confer the highest stage (that is, to biopsy a suspected metastasis or mediastinal lymph node rather than the pulmonary lesion).
 - Technologies and expertise available
 - Decision about the optimal diagnostic steps for suspected stage I to III lung cancer should be made by thoracic radiologists, interventional radiologists, and board-certified thoracic surgeons who devote a significant portion of their practice to thoracic oncology. Multidisciplinary evaluation may also benefit from involvement of a pulmonologist with experience in advanced bronchoscopic techniques for diagnosis, depending on local expertise.

The preferred diagnostic strategy for an individual patient depends on the size and location of the tumor, the presence of mediastinal or distant disease, patient characteristics (such as pulmonary pathology and/or other significant comorbidities), and local experience and expertise. Decisions regarding whether a biopsy (including what type of biopsy) or surgical excision is appropriate depend on several factors, as outlined in the NCCN algorithm (see DIAG-A, pages 649 and 650). In many situations when the suspicion of lung cancer is high and the patient is a surgical candidate, preoperative biopsy may be unnecessary, because it adds time, cost, and procedural risk but is unlikely to alter the plan for surgical resection (ie, pathologic diagnosis is established intraoperatively). However, if an intraoperative diagnosis is risky or difficult or if there is a significant suspicion of an alternative diagnosis, then a preoperative biopsy may be beneficial.

The optimal biopsy approach depends on various factors, including size and location of the nodule, associated lung disease (eg, emphysema), proximity to other structures, and experience and technologies available in the local health care system. Factors to be considered in choosing a biopsy technique include diagnostic yield (sensitivity), diagnostic accuracy (especially true-negative yield), adequacy of tissue volume, risk of the procedure, efficiency (access and timeliness of biopsy), and local experience and expertise. In general, the least-invasive biopsy technique with the highest diagnostic yield should be selected, and the NCCN Guidelines outline general principles to help direct clinicians in this process (see DIAG-A, pages 649 and 650). Radial probe endobronchial ultrasound (EBUS), navigational bronchoscopy, or transthoracic needle aspiration is recommended for patients with suspected peripheral nodules. Routine bronchos-
copy with (or without) EBUS is preferable for centrally located masses. Mediastinoscopy, EBUS, or navigational bronchoscopy is recommended for patients with suspected nodal disease. Another general principle is to preferentially biopsy the abnormality that would simultaneously confer the highest tumor stage. For example, in a patient with a suspicious liver lesion or pleural effusion, liver biopsy or thoracentesis would most efficiently obtain a tissue diagnosis and establish stage IV disease. Communication among the pathologist, medical oncologist, and practitioner performing the biopsy is of the utmost importance to ensure that sufficient tissue is obtained and processed properly to facilitate molecular testing for genetic alterations (eg, epidermal growth factor receptor mutations, ALK gene rearrangements).

If pathology results from biopsy or surgical excision indicate a diagnosis of NSCLC (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC; to view the complete version of these guidelines, visit NCCN.org), then further evaluation and clinical staging must be performed so that the patient’s health care team can determine the most appropriate and effective treatment plan (see NSCL-1, above). Accurate histology must be determined (eg, adenocarcinoma, squamous cell carcinoma) before initiating systemic therapy; a general diagnosis of NSCLC is not recommended.

Diagnosis, staging, and planned resection (eg, lobectomy) are ideally a single operative procedure for patients with early-stage disease (see DIAG-A, pages 649 and 650). Confirmation and staging of lung cancer are essential before lobectomy or pneumonectomy, although they can be performed with intraoperative diagnosis and concomitant mediastinal staging. The mediastinal lymph nodes must be assessed, because upstaging can occur in patients with presumed early-stage NSCLC based on imaging alone.
Conclusions

Most patients with lung cancer are currently identified by symptoms, including weight loss, long-term cough, and dyspnea. For patients with suspected lung cancer, diagnostic and treatment strategies should be decided in a multidisciplinary setting and on an individual basis to maximize outcomes. A new section on diagnostic evaluation of suspected lung cancer was added for the 2013 update of the NCCN Guidelines for NSCLC (to view the most recent version of these guidelines, visit NCCN.org). This new diagnostic section describes the evaluation of suspicious pulmonary nodules or masses that are seen on chest radiograph and CT. Patient factors and radiologic characteristics must be carefully evaluated by a multidisciplinary diagnostic team to help formulate decisions about how to proceed with workup of a suspicious lung nodule. The NCCN Guidelines recommend that the diagnostic strategy be individualized for each patient depending on the size and location of the tumor, the presence of mediastinal or distant disease, patient characteristics, and local experience. The least-invasive biopsy technique with the highest diagnostic yield should be selected; the NCCN Guidelines outline general principles for this process. When obtaining a biopsy specimen, it is essential that the pathologist, medical oncologist, and practitioner confer to ensure that sufficient tissue is obtained and processed properly to facilitate molecular testing. If NSCLC is diagnosed, then further evaluation and clinical staging must be performed so that the patient’s health care team can determine the most appropriate and effective treatment plan.

References

Instructions for Completion

To participate in this journal CE activity: 1) review the learning objectives and author disclosures; 2) study the education content; 3) take the posttest with a 70% minimum passing score and complete the evaluation at http://education.nccn.org/node/22017; and 4) view/print certificate. After reading the article, you should be able to answer the following multiple-choice questions. Credit cannot be obtained for tests completed on paper. You must be a registered user on NCCN.org. If you are not registered on NCCN.org, click on “New Member? Sign up here” link on the left-hand side of the Web site to register. Only one answer is correct for each question. Once you successfully answer all posttest questions you will be able to view and/or print your certificate. Software requirements: Internet.

Posttest Questions

1. For patients who appear to have early-stage lung cancer, which of the following is/are TRUE?
 a. Diagnosis, staging, and resection can be a single operative procedure.
 b. Multidisciplinary evaluation is not recommended.
 c. Preoperative biopsy is essential.
 d. All of the above
 e. None of the above

2. Which of the following is/are TRUE about biopsies for lung cancer?
 a. The least invasive biopsy technique with the highest yield should be selected.
 b. Radial probe endobronchial ultrasound, navigational bronchoscopy, or transthoracic needle aspiration is recommended for patients with suspected peripheral nodules.
 c. Diagnostic yield (sensitivity), diagnostic accuracy (especially true negative yield), adequacy of tissue volume, risk of the procedure, efficiency (access and timeliness of biopsy), and local expertise and expense should be considered.
 d. All of the above
 e. None of the above

3. True or False: All lung nodules observed on low-dose CT scans should be biopsied as soon as possible.