Next-Generation Sequencing: Role in Gynecologic Cancers

Authors:
Tarra Evans From the Departments of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital; and Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Search for other papers by Tarra Evans in
Current site
Google Scholar
PubMed
Close
 MD
and
Ursula Matulonis From the Departments of Obstetrics and Gynecology, Division of Gynecologic Oncology, Brigham and Women's Hospital; and Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Search for other papers by Ursula Matulonis in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Next-generation sequencing (NGS) has risen to the forefront of tumor analysis and has enabled unprecedented advances in the molecular profiling of solid tumors. Through massively parallel sequencing, previously unrecognized genomic alterations have been unveiled in many malignancies, including gynecologic cancers, thus expanding the potential repertoire for the use of targeted therapies. NGS has expanded the understanding of the genomic foundation of gynecologic malignancies and has allowed identification of germline and somatic mutations associated with cancer development, enabled tumor reclassification, and helped determine mechanisms of treatment resistance. NGS has also facilitated rationale therapeutic strategies based on actionable molecular aberrations. However, issues remain regarding cost and clinical utility. This review covers NGS analysis of and its impact thus far on gynecologic cancers, specifically ovarian, endometrial, cervical, and vulvar cancers.

Correspondence: Ursula Matulonis, MD, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. E-mail: umatulonis@partners.org
  • Collapse
  • Expand
  • 1.

    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74:54635467.

  • 2.

    Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics 2008;9:387402.

  • 3.

    Hagemann IS, Fuchs S, Monoranu CM et al.. Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Cancer Genet 2013;206:420431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lovly CM, Shaw AT. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin Cancer Res 2014;20:22492256.

  • 5.

    Lui J, Konstantinopoulos P, Matulonis UA. Genomic testing and precision medicine-what does this mean for gynecologic oncology? Gynecol Oncol 2016;140:35.

  • 6.

    Cancer Genome Atlas Research Network Weinstein JN, Collisson EA et al.. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat Genet 2013;45:11131120.

  • 7.

    The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474:609615.

  • 8.

    Konstantinopoulos PA, Ceccaldi R, Shapiro GI et al.. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 2015;5:11371154.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ahmed AA, Etemadmoghadam D, Temple J et al.. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 2010;221:4956.

  • 10.

    Seagle BL, Eng KH, Dandapani M et al.. Survival of patients with structurally-grouped TP53 mutations in ovarian and breast cancers. Oncotarget 2015;6:1864118652.

  • 11.

    Patch AM, Christie EL, Etemadmoghadam D et al.. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015;521:489494.

  • 12.

    Romero I, Sun CC, Wong KK et al.. Low grade serous carcinoma: new concepts and emerging therapies. Gynecol Oncol 2013;130:660666.

  • 13.

    Hunter SM, Anglesio MS, Ryland GL et al.. Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes. Oncotarget 2015;10:3766337677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wiegand KC, Shah SP, Al-Agha OM et al.. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010;363:15321543.

  • 15.

    Gounaris I, Brenton JD. Molecular pathogenesis of ovarian clear cell carcinoma. Future Oncol 2015;1:13891405.

  • 16.

    Pennington KP, Swisher EM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol Oncol 2012;124:347353.

  • 17.

    Brown J, Frumovitz M. Mucinous tumors of the ovary: current thoughts on diagnosis and management. Curr Oncol Rep 2014;16:389.

  • 18.

    Ryland GL, Hunter SM, Doyle MA et al.. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors Genome Med 2015;7:87.

  • 19.

    Callegaro-Filho D, Gershenson DM, Nick AM et al.. Small cell carcinoma of the ovary-hypercalcemic type (SCCOHT): a review of 47 cases. Gynecol Oncol 2016;140:5357.

  • 20.

    Ramos P, Karnezis AN, Craig DW et al.. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014;46:427429.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:6773.

  • 22.

    Helsten T, Elkin S, Arthur E et al.. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016;22:259267.

  • 23.

    Parish A, Schwaederle M, Daniels G et al.. Fibroblast growth factor family aberrations in cancers: clinical and molecular characteristics. Cell Cycle 2015;13:21212128.

  • 24.

    Wright A, Howitt BE, Myers AP et al.. Oncogenic mutations of cervical cancer. Cancer 2013;119:37773783.

  • 25.

    Ojesina AI, Lichtenstein L, Freeman SS et al.. Landscape of genomic alterations in cervical carcinomas. Nature 2014;506:371375.

  • 26.

    Trietsch MD, Nooij LS, Gaarenstroom KN et al.. Genetic and epigenetic changes in vulvar squamous cell carcinoma and its precursor lesions: a review of the current literature. Gynecol Oncol 2015;136:143157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Walsh T, Casadei S, Lee MK et al.. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A 2011;108:1803218037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Norquist BM, Harrell MI, Brady MF et al.. Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2015;2:482490.

  • 29.

    Song H, Dicks E, Ramus SJ et al.. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 2015;33:29012907.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ramus SJ, Song H, Dicks E et al.. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015;107:djv214.

  • 31.

    Daly MB, Pilarski R, Axilbund JE et al.. NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Accessed August 6, 2016. To view the most recent version of these guidelines, visit http://www.nccn.org.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chong HK, Wang T, Lu HM et al.. The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay. PLoS One 2014;9:e97408.

  • 33.

    Frampton GM, Fichtenholtz A, Otto GA et al.. Development and validation of clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:10231031.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kurian AW, Hare EE, Mills MA et al.. Clinical evaluation of multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 2014;32:20012009.

  • 35.

    Kurian AW, Kingham KE, Ford JM. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr Opin Obstet Gynecol 2015;27:2333.

  • 36.

    Eccles DM, Mitchell G, Monteiro AN et al.. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol 2015;26:20572065.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Khan MJ, Castle PE, Lorincz AT et al.. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type specific HPV testing in clinical practice. J Natl Cancer Inst 2005;97:10721079.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    de Sanjose S, Quint WG, Alemany L et al.. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010;11:10481056.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Castle PE, Sadorra M, Lau T et al.. Evaluation of a prototype real-time PCR assay for carcinogenic human papillomavirus (HPV) detection and simultaneous HPV genotype 16 (HPV16) and HPV18 genotyping. J Clin Microbiol 2009;47:33443347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Heideman DA, Hesselink AT, Berkhof J et al.. Clinical validation of the cobas®4800 HPV Test for cervical screening purposes. J Clin Microbiol 2011;49:39833985.

  • 41.

    Mirabello L, Frimer M, Harari A et al.. HPV16 methyl-haplotypes determined by a novel next-generation sequencing method are associated with cervical precancer. Int J Cancer 2015:136:E146153.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Chandrani P, Kulkami V, Iyer P et al.. NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome. Br J Cancer 2015;112:19581965.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Arroyo LS, Smelov V, Bzhalava D et al.. Next generation sequencing for human papillomavirus genotyping. J Clin Virol 2013;58:437442.

  • 44.

    Barzon L, Millitello V, Lavezzo E et al.. Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol 201;52:9397.

  • 45.

    Yi X, Zou J, Xu J et al.. Development and validation of a new HPV genotyping assay based on next-generation sequencing. Am J Clin Pathol 2014;141:796804.

  • 46.

    Clarke MA, Wentzensen N, Mirabello L et al.. Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol Biomarkers Prev 2012;21:21252137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Ciriello G, Miller ML, Aksoy BA et al.. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013;45:11271133.

  • 48.

    Bolton KL, Chenevix-Trench G, Goh C et al.. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 2012;307:382390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Jones S, Wang TL, Shih leM et al.. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010;330:228231.

  • 50.

    Katagiri A, Nakayama K, Rahman MT et al.. Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol 2012;25:282288.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Liu J, Matulonis UA. New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. Clin Cancer Res 2014;20:51505156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Galic V, Coleman RL, Herzog TJ. Unmet needs in ovarian cancer: dividing histologic subtypes to exploit novel targets and pathways. Curr Cancer Drug Targets 2013;13:698707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Ledermann J, Harter P, Gourley C et al.. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 2012;366:13821392.

  • 54.

    Ledermann J, Harter P, Gourley C et al.. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 2014;15:852861.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kaufman B, Shapira-Frommer R, Schmutzler RK et al.. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244250.

  • 56.

    Kim G, Ison G, McKee AE et al.. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 2015;21:42574261.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Farley J, Brady WE, Vathipadiekal V et al.. Selumetanib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol 2013;14:134140.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kauff ND, Domchek SM, Friebel TM et al.. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study J Clin Oncol 2008;26:13311337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Walker JL, Powell CB, Chen LM et al.. Society of Gynecologic Oncology recommendations for the prevention of ovarian cancer. Cancer 2015;121:21082120.

  • 60.

    Rebbeck TR, Mitra N, Wan F et al.. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 2015;313:347361.

  • 61.

    Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer Clin J 2016;66:7588.

  • 62.

    Johansen Taber KA, Dickinson BD, Wilson M. The promise and challenges of next generation genome sequencing for clinical care. JAMA Intern Med 2014;174:275280.

  • 63.

    Geskin A, Legowski E, Chakka A et al.. Needs assessment for research use of high-throughput sequencing at a large academic medical center. PLoS One 2015;10:e0131166.

  • 64.

    Gallego CJ, Shirts BH, Bennette CS et al.. Next generation sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: a cost-effectiveness analysis. J Clin Oncol 2015;33:20842091.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Manchanda R, Legood R, Burnell M et al.. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi Jewish women compared with family history-based testing. J Natl Cancer Inst 2014;107:380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Emerson JO, Sherwood AM, Rieder MJ et al.. High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J Pathol 2013;231:433440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Manzo T, Heslop HE, Rooney CM et al.. Antigen specific T cell therapies for cancer. Hum Mol Genet 2015;24:R6773.

  • 68.

    Stevanovic S, Draper LM, Langhan MM et al.. Complete regression of metastatic cervical cancer after treatment with human papilloma-virus-targeted tumor-infiltrating T cells. J Clin Oncol 2015;33:15431550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Strickland KC, Howitt BE, Shukla SA et al.. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer Oncotarget 2016;7:1358713598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Howitt B, Shukla SA, Sholi LM et al.. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol 2015;1:13191323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Fader AN, Diaz LA, Armstrong DK et al.. Preliminary results of a phase II study: PD-1 blockade in mismatch repair-deficient recurrent or persistent endometrial cancer [abstract]. Presented at the 47th Annual Meeting of the Society of Gynecologic Oncology; March 19–22, 2016; San Diego, California. Abstract LBA 3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Gargis A, Kalman L, Berry MW et al.. Assuring the quality of next generation sequencing in clinical laboratory practice. Nat Biotechnol 2012;30:10331036.

  • 73.

    Esposito A, Bardelli A, Criscitiello C et al.. Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities. Cancer Treat Rev 2014;648655.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Pereira E, Camacho-Vanegas O, Anand S et al.. Personalized circulating tumor DNA biomarkers dynamically predict treatment response and survival in gynecologic cancers. PLoS One 2015;10:e0145754.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3555 2003 92
PDF Downloads 1288 294 10
EPUB Downloads 0 0 0